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The Stokes equations are solved by a Chebyshev pseudospectral method on a rectangular 
domain. As the resulting system of algebraic equations is very difftcult to factorize, a precondi- 
tioning is designed using a finite element technique. The fern solver constitutes the masterpiece 
of a Richardson iteration process. Several finite elements are investigated: the 9-nodes 
Lagrangian element QZ-Ql, the Ql-QO element, and the Ql-Ql element due to Brezzi and 
Pitkaranta. An eigenvalue analysis is carried out in order to pinpoint the characteristic 
features of each preconditioner. It is shown that the Q2-Ql element yields the best 
convergence results. The power of this choice is demonstrated on theoretical solutions and on 
the regularized square cavity problem. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

This paper deals with the numerical integration of the linear Stokes equations 
using Chebyshev approximations for the primitive variables (velocity-pressure 
formulation). Among the various spectral projection methods available to the 
numericists [l, 23, the pseudospectral technique constitutes at the present time the 
best choice to cope with nonconstant coefficients in the partial differential equations 
or with complex geometries, while still retaining spectral accuracy (“infinite order” 
of convergence for smooth problems). 

As usual, the major bottleneck of the pseudospectral calculation comes from the 
solution of the linear system, as resulting matrices are not banded and not very well 
conditioned. Therefore, in order to reduce the computational intensive work needed 
to produce the answer, preconditioning algorithms are designed. S. A. Orszag [3] 
and Y. Morchoisne [4] proposed independently to work with finite difference (FD) 
preconditioning. Haldenwang et al. [S] showed for the Helmholtz equation that 
this preconditioning converges if the iterative method is underrelaxed. This conclu- 
sion contrasts greatly with the results obtained by Deville and Mund [6] with finite 
element preconditioning for general second-order elliptic equations, where no 
underrelaxation was applied. This better behaviour may be explained by an eigen- 
value analysis of the preconditioned pseudospectral operator [7] and allows in 
some cases to even practise overrelaxation. 
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This good performance together with the ability of treating complicated 
geometries through the finite element (FE) method convinced us to investigate FE 
preconditioning of Chebyshev pseudospectral solutions of the Stokes equations. 
Preliminary results were already showed at the Ninth International Conference on 
Numerical Methods Fluid Dynamics [8]. Of course, it is very worthwhile and 
time-saving to resort to existing codes as preconditioners. In some sense, the 
strategy is the same as in car racing where the turbo part coming on top of a con- 
ventional atmosphere engine provides power and milecrunching. In the numerical 
world, Chebyshev methods yield the computational power and the FE code offers 
a well-known and performing tool for number-crunching. 

Section 2 presents the basic equations, set definitions, and notations and 
describes the pseudospectral approximation. Section 3 introduces briefly each finite 
element preconditioner and, in particular, carries out an eigenvalue analysis of the 
preconditioned pseudospectral operator. This analysis will allow us to discuss the 
pros and cons for each preconditioner. Section 4 deals with numerical results on 
analytical solutions and a test problem. The last section draws the conclusions of 
this investigation. 

2. BASIC EQUATIONS AND ALGORITHMS 

2.1. Basic Equations 

The stationary Stokes equations express, that for a zero Reynolds number, the 
momentum equations are for a Newtonian fluid 

Oji, j + Pfi = O9 (2.la) 

uii = - pSii + 2,ud,, (2.lb) 

du= f(ui,j+ uj,i), (2.lc) 

where ui denote the components of the velocity field, p the pressure, ~1 the dynamic 
viscosity, and fi the components of the external forces. The components of the stress 
tensor cii depend linearly on the components dii of the rate of deformation tensor 
through (2.lb). As the fluid will be assumed incompressible, the flow must satisfy 
the continuity constraint 

ui,i=o. (2.2) 

Summation over repeated indices is assumed. The comma notation means partial 
differentiation. Equations (2.1) and (2.2) are solved on the domain Sz. The 
boundary conditions will be formally expressed as 

Bti=g, on aQ, (2.3) 

where the bar is used for vector notation. 
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The boundary condition operator B splits in two parts. The first one applies the 
essential conditions on aa,, i.e., 

ii(F) = g,(J), v7E asz,. (2.4) 

In (2.4), F denotes the position vector of a point. The second part of the boundary 
is concerned with natural conditions: 

i(r)=G-n= &(f), m da,, (2.5) 

where Z is the stress tensor defined by (2.lb) and fi the unit outward normal vector 
to that part of 852. 

This linear set of equations will be solved by the Chebyshev pseudospectral 
approximation method. 

2.2. Notations and Definitions 

In this paper, we borrow and extend the notations from Canuto and Pietra [9]. 
Let us denote by N the couple (N,i , NX2) E N x N, where N is the set of natural 
numbers (positive integers). The discrete Chebyshev mesh GN results from the 
tensor product of l-dimensional Gauss-Lobatto-Chebyshev (GLC) quadrature 
grids, 

G,= @ G.xi,N.xi, i= 1,2, (2.6) 

with G,i,N,.i being the roots of the equation 

(1 -x2) Thx.=O, XE c-4 11, (2.7) 

In this relation, TNxi is the Chebyshev polynomial of first kind and degree NXi. 
Therefore, the GLC grid contains the points: 

nk 

xk = cos Ki’ 
k = 0, . . . . Nxi. (2.8) 

Let R, represent the collection of rectangles whose vertices are four neighbouring 
gridpoints of G, such that R,= Ui Ri. Let P,,,, denote the space of 2-rectangles 
of type (n) or 2-dimensional Lagrangian finite elements which restrict to a nth 
degree polynomial over each rectangle Ri E R,. Here we will consider n = 0, 1, or 
2 [lo]. 

The space P, will contain all the continuous functions in l(;r = a u &2, which are 
Chebyshev orthogonal polynomials of degree NXi in the xi variable. 

As the Chebyshev pseudospectral scheme will be preconditioned by finite 
elements, we have to define a few spaces related to this method. The velocities will 
come from V,,,: 
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while the pressure belongs to Pn,h: 

Pn,h= {qhEL2(a)IvRiERN,qhIR,EP~,,,), n=03 l}. (2.10) 

Given a smooth continuous function cp on 80, V,,,(cp) will be the ahine space of 
the functions in V,,, which coincide with cp at the boundary nodes of 80,: 

Vn,,(cp) = {oh E Vn,, I uh(Tb) = dr6), Vr, E G,,, n a%>. (2.11) 

An interesting particular case is the subspace Vn,JO) which will be denoted in short 
by: 

vi,* = Vn,h(0). 

In (2.1 l), the grid G,,, is the set of global nodes for the (N,i, Nx2) FE mesh in 
Q with 2-rectangle of type (n), n = 0, 1,2. For n = 1, notice that G,r G,,,. The 
GO,N grid is built up with the nodal values attached to the centroid of R,. 
Associated with these partitions, one has a set of linear functionals lc,N defined on 
the global grid G, N. At the elemental level (or local grid), this set corresponds to 
a nth degree bivahate Lagrange interpolation problem. It is clear that I,” N is an 
isomorphism of the set of nodal values defined on G+. 

Let us now define some important interpolation operators pertinent for the 
preconditioning technique. The notation I,, will represent the finite element 
interpolator on the Lagrangian basis functions: 

‘c,,: CO(i2) + v,,, 
(zE,hU)(Fi) = ~Gn,Nu(fi)7 

zq . m,h’ 

Vri E G, N 

jzZ,hq)(ri) = fGm,,q(ri)3 Vri E G, ,,,. 

(2.12) 

A particular case arises when velocities satisfy homogeneous Dirichlet conditions. 
Denoting this case by Zz, one obtains 

(2.13) 

\ (‘Z,hq)(‘i) = ~c&N4(ri)9 Vri E G, ,,r. 
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Of course, we need a spectral interpolation operator acting from a discrete set of 
values into P,,,. The spectral interpolation for the velocities is defined as 

p = rN: CO(sz) ‘P, 
N { (Iv,u)(FJ = U(Fi), VfiE G,. 

(2.14) 

For the pressure, we will distinguish two cases. The first one is described by the 
relations 

14’ 1 = I 1%’ : CO( a> -+ P, 
N 

tzE’ 4)t7i) = dri), Vfi E GN, 
(2.15) 

while the second case corresponds to the next equations: 

p.0 - 
{ 

1%” 1 : P(8) -+ P, _ 1 
N-1 - (I$ylq)(ri)=q(rj), Vfi~ GO,N. 

(2.16) 

The pressure computed on the GO,N g rid will be filtered to get rid of the spurious 
checkerboard (CB) mode. To this end, one introduces the restriction operator 
RN- i such that 

RN-1= (RN--z~O,q)(ri)=q(Si), i 
RN-~: p,-, ‘P,-, 

VFi E GO,N, Vii E Go c-. 
(2.17) 

In (2.17), the new mesh Go,ce is defined by the next relationship 

G O,CB= {(xi,yj),xi=;(cos~.~+cos~.;), i=l...iv,,, 
Xl 

yj=; cos~.;+cos- 

( x2 

y21 .$= I...N,,}. (2.18) 

Note that this grid contains only (N- l)* discrete points if N,, = A’,, = N. 
The full spectral interpolator which encompasses velocities and pressure will be 

written as IN with the meaning: 

i 

I;, I”N 
IN= or (2.19) 

1% 1 
N, RN-,1%‘?1. 

The context of the usage of (2.19) will make clear which definition is in 
application. 

2.3. Pseudospectral Approximation 

The pseudospectral approximation is a weighted residual method where the 
residual is evaluated by insertion of the Iinite development of the dependent 
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variables with respect to basis functions q,(r). Denoting by uN a typical dependent 
variable, one gets 

i-0 j=O 

where 

cp,(z)= (1 -z’) rA/z(z)(-l)i+l 
I CiN;(z-zi) ’ 

i = 0, . . . . N,, 
(2.21) 

c,=c,=2; zi= 1, i= 1, . . . . N,- 1. 

The functions defined in (2.21) satisfy 

Then, the projection method requires that the scalar product (usually defined by a 
quadrature) of the residual with well-chosen weight functions vanishes. For the 
pseudospectral scheme, these weight functions are Dirac distributions. The partial 
differential problem is required to be solved exactly on a discrete set of interior 
collocation points while the boundary conditions are enforced on 8Q. This colloca- 
tion procedure depends very much on the choice of collocation nodes. Here, these 
nodes are the zeroes associated with the Gauss-Lobatto-Chebyshev quadrature 
rule. 

The pseudospectral equations are gotten combining (2.la) and (2.lb): 

(-gradp+2~divd+pf)(ri)=0, 

(div ti)(Ti) = 0, 
V~,EG nO 

I N 9 

-- 

u(ri) = iltFi), VJ, E G, n Xl,, (2.22) 
- - d . n(r,) = E2(Fi), VriEGNniX2,. 

If L”’ denotes the Stokes differential operator corresponding to the two first equa- 
tions of (2.22), the matrix system equivalent to (2.22) may be cast in the form 

where 

L,,x = 6, (2.23) 

L,.=[ 21, x=[fl, 
(2.24) 

Instead of solving (2.23), the pseudospectral system is preconditioned in order to 
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reduce the condition number of the algebraic system and to take ample profit of 
well-known and efficient solvers. The preconditioned Richardson iteration consists 
in the next relationship 

$k+ 1) = $W _ uk~-‘(~,,~‘W _ 6), (2.25) 

where 
t= LFE (2.26) 

is the approximate operator based on a finite element approach. In (2.25), the 
superscript is an iteration counter. 

If the sequence of iterates Xtk) converges, Eq. (2.25) leads to the solution of (2.23). 
The initial guess for (2.25) comes from 

x(O)= Z&.Wh, 

where We is the solution of the finite element problem 

(2.27) 

(2.28) 
qh div iih dQ = 0, J 22 E m% 

%,,= uh [ 1 Ph 

In (2.28), the components of Oh and qh belong to v,,h and Pn,h, respectively. This 
will be discussed in more detail in the next section. The subsequent iterations are 
defined by the equation 

$k+l) = z(k) - ukz,~,-,‘[zy(~,,~‘k’ - @, Jy(;‘k’ . jj - g,)], (2.29) 

where the relaxation parameter uk plays an essential role. Its choice will depend on 
the eigenvalue spectrum of L$ L,,. In (2.29), one introduces Jzm a finite element 
interpolator on the portion of the boundary where natural boundary conditions are 
prescribed. The definition of J2m is 

{ 

tzti,hu)tFi) = ~Gn,NV(Tih Vii E G,,, n aa,, 

J;“‘(i) = 0, V(TiEG,NnaQ,, 

(z&h9)(ri) = fGm,N9(ri)9 VriEG,Nna12,, 

0, VriEGm~,ndSd,. 

At a point where dQ, and 80, intersect, the essential condition is enforced. For 
readers more familiar with a matrix formulation, Eq. (2.29) may be written as 

$k+ 1) =X(k) _ uk~-’ M R(k) 
3 (2.31) 

581/83/Z-15 
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where K is the stiffness matrix and M the mass matric of the finite element 
approximation. The notation RCk) defines the quantities 

(2.32) 

Returning to (2.28) and (2.29), the integrals involved in these expressions are 
calculated at the elemental level by a Gauss-Legendre (GL) quadrature rule with 
three points in each space direction. The various spectral interpolators IN 
(2.14k(2.16) yield the needed values at the nodes of the GL rule. The residue 
calculation (2.32) on the G, grid may be performed in two ways. The first one 
resorts to matrix multiplications to carry out derivative operations. This is 
extremely efficacious on a vector computer because of the high vectorization level 
achieved by most systems on matrix computations. The second track uses. a FFT 
algorithm with possible pre- and post-processings to take all the symmetries into 
account. The residual evaluation is done in Chebyshev space by recurrence equa- 
tions and real values are restored through inverse discrete Chebychev transforms 
(DCT [ 111). This scheme is more efficient on serial machines as it operates in 
O(N.log(N)) floating point operations per second (flops) compared to IV2 flops for 
matrix multiplications. For other points such that ric Gn,,,\GN, the values are 
obtained by Clenshaw recurrence. 

Once the computation is ended at the elemental level, the full matrix system is 
built up by direct stiffness and solved by LU factorization for sparse matrices with 
minimum-degree ordering [ 12, 13 1. 

We should stress at this point that the previous procedure of residual calculation 
at the GL nodes differs from the classical collocation methods. We might call it 
pseudocollocation after a suggestion by C. Canuto. However, it offers the advantage 
of taking full power of finite element know-how as it can be easily extended to 
general geometries with isoparametric transformations generating geometric 
coefficients inside the quadrature rule. 

The convergence of the preconditioned pseudospectral iterative process depends 
on the spectral radius of I- A, where A = K-‘ML,,, and therefore on the condi- 
tion number of A. We will consider K(A) = ~max/~min as a measure of the condition 
number of A even when A is not symmetric, A,,, and Amin being the maximum and 
minimum eigenvalues of A, respectively. These eigenvalues are given by their 
modulus. 

3. FINITE ELEMENT PRECONDITIONERS 

The finite element approximation of fluid flow computations requires the imposi- 
tion of an inf-sup stability condition due to Brezzi and Babuska [14, 151, which 
provides compatibility between computed pressure and velocities in order to avoid 
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TABLE I 

Minimum and Maximum Eigenvalue of the 
Pseudospectral Stokes Problem with Respect to the 

Chebyshev Cutoff Value 

N A mar Anin 

5 - 58.43 -0.0797 
7 - 223.84 -0.0359 
9 - 646.73 - 0.0205 

11 - 1528.74 -0.0131 
13 -3124.22 - 0.0090 

the presence of spurious oscillating pressure modes. Three types of velocity-pressure 
elements are investigated in the present paper: 

(I) the Q2-Q 1 element (biquadratic velocities; bilinear pressures); 
(II) the Ql-Ql element proposed by Brezzi and Pitkaranta [16]; 

(III) the Ql-QO element (bilinear velocities; constant pressures). 

The element I satisfies the Babuska-Brezzi condition while element III fails the 
test. Element II solves a perturbed problem which does not call for such a condi- 
tion. The choice of I is motivated by the fact that the element vertices coincide with 
G,. However, this element induces a large amount of computer time as the 
velocities belong to V2,h, thereby increasing the bandwidth of the matrix system. 
Element II seems to be a better choice from the computational point of view 
because velocities and pressures are in I’,,, and P,,,, respectively. Finally, element 
III implements a staggered approach and offers a reduced computing time with 
velocities and pressure in l/,,h and PO,h, respectively. This element is the finite 
element counterpart of a collocation technique designed for the Navier-Stokes 

TABLE II 

Condition Number of A for the Stokes 
Problem Preconditioned by Q2-Ql Finite Elements. 

Dirichlet Boundary Conditions 

5 1.916 1.9943 1.927 
7 1.926 0.9974 1.931 
9 1.913 0.9963 1.920 

11 1.993 0.9933 2.006 
13 2.007 0.9899 2.003 
15 2.008 0.9865 2.036 
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equations by Malik et al. [ 173. The pseudospectral method was preconditioned by 
finite differences on a staggered grid. 

From the spectral side, we have to recall that in the 2D case, the velocity- 
pressure formulation with the Chebyshev approximation has spurious pressure 
modes when velocities and pressure are attached to the same nodes of G,. This 
phenomenon was first noticed by Morchoisne [18], and Bernardi et al. [19] 
proved that the dimension of the subspace containing all spurious pressure modes 
is equal to 8. 

Now, we proceed to a careful examination of each preconditioner. 

3.1. The Q2-Ql Element 

Here, the preconditioned pseudospectral iteration algorithm becomes 

p+ 1) = f(k) - fqJ&; [Q l(Lps$k) - @, J? ‘(g(k). fi - &)]. (3.1) 

The eigenvalue analysis of A = L$I? ‘L,, was carried out. For the sake of 
simplicity, let us take N,.i = N. Table I reports the numerical results of the extreme 
eigenvalues of LEs with respect to an increase of the number of degrees of freedom. 
Notice that the maximum eigenvalue behaves like a function of N4. This result is 
not surprising as the Stokes problem is a second-order elliptic problem. Each eigen- 

Real Part 

Real Part 

FIG. 1. Eigenvalue spectrum of A. Stokes problem preconditioned by Q2-Ql FE. Dirichlet boundary 
conditions: (a) N= 5, (b) N= 13. 
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value analysis yields seven zero eigenvalues corresponding to the spurious pressure 
modes, as the hydrostatic mode is removed by imposing a reference pressure. 
Therefore, the first minimum nonvanishing eigenvalue decreases like N -2.3 with 
liner discretization. In Table II the condition number of A is examined for a Stokes 
flow with Dirichlet boundary conditions. For higher N values, it is close to 2. This 
behaviour emphasizes the quality of this preconditioner. The optimal value of ak is 
3. Figures la and b display the clustering of the spectrum of A between - 1 and -2 
with N=5 and 13. 

In Table III, the condition number of A is analyzed for a Stokes flow where 
dS2, = {x = 1; y = 1 }. The minimum eigenvalue goes to unity with increasing d.o.f., 
while A,,,,, gets close to 7r2/4. Figures 2a and b show the eigenvalue spectrum which 
has broadened with respect to the Dirichlet case, for N = 5 and 13. 

3.2. The Ql-Ql Element 

The iterative algorithm is 

X(k+ 1) = z(k) - a,Z,L,-,’ [Z~‘(L,,~(k) _ 6), Jil(z(k) .n _ g2)]. (3.2) 

The stability of this scheme using equal-order interpolants for velocities and 

FIG. 2. Eigenvalue spectrum of A. Stokes problem preconditioned by Q2-Ql FE. Natural boundary 
conditions: (a) N= 5; (b) N= 13. 
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TABLE III 

Condition Number of A for the Stokes Problem 
Preconditioned by Q2-Ql Element. Natural Boundary 
Conditions on sides x = 1 and y = 1. 

N 1 max 

5 2.177 0.9330 
7 2.455 0.9664 
9 2.470 0.9762 

11 2.434 0.9787 
13 2.442 0.9801 
15 2.444 0.9810 

+ K(A) 

mm 

2.333 
2.540 
2.530 
2.487 
2.491 
2.491 

pressure is achieved by adding a stabilization term in the discrete equations. The 
continuity equation in (2.28) is modified as 

c h j? J1, grad p,, . grad qh dS + fa qh div ii,, df2 = 0, RiE9?pJ. (3.3) 
i 

In (3.3), hf denotes some measure at the elemental level. This element does not 
require the inf-sup condition anymore. It seems to be a very attractive precondi- 
tioner as no spurious pressure mode has to be filtered. However, the eigenvalue 
analysis shows dismal performances. As Table IV exhibits, the maximum eigenvalue 
of A goes to 2 as for the Q2-Ql preconditioner. In addition of the seven zero 
eigenvalue corresponding to the spectral spurious pressure modes, the minimum 
nonvanishing eigenvalue goes to zero when the discretization becomes liner. The 
iteration (3.2) cannot converge to the spectral solution within an adequate finite 
number of iterations. Figure 3 shows the spectrum of A which lies between 0 and 

TABLE IV 

Eigenvalue Analysis of A for the 
Preconditioned Stokes Problem by 
Ql-Ql Finite Elements. Dirichlet 

Boundary Conditions 

5 1.406 3.465 10 -3 
7 1.610 1.670 lo-’ 
9 1.711 8.523 1O-4 

11 1.773 4.890 lo-“ 
13 1.816 3.053 1o-4 
15 1.853 2.031 1O-4 
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-2 for N= 13. The bunch of eigenvalues in the interval ] - LO] corresponds to the 
stabilization term of (3.3). They accumulate near the origin with increasing values 
of N. 

3.3. The Ql-QO Element 

The pseudospectral iterates are computed by the relation 

p+ I) = jy - ~,zNL,-,‘[zy(L,,~‘~’ - 6), Jy(p’. fi - &)I, (3.4) 

where 

IhI= 44 
{ I po ’ 

N-1 

In Se,, pressures are attached to the nodes of GO,N. This pressure arrangement 
is coherent with the weak formulation (2.28). The analysis carried out by Sani et 
al. [20] shows the presence of two spurious modes: the hydrostatic and checker- 
board (CB) modes. This last spurious mode is a numerical artifact triggered by the 
solution of the Stokes problem where two pressures are imposed at well-selected 
points in order to remove the singularity of the algebraic system. 

On GN, the global CB mode is an odd function of the space variables and is 
known to within a multiplicative constant. 

3.3.1. FE Filter. Denoting by p’ the CB mode at the element level, one knows 
that 

p’ = f k/A’, (3.5) 

0.2 1 
in 
a 1 I 

P 1 
a 
r I I 

L4l’ 
-2 . -1 0 

Real Part 

FIG. 3. Eigenvalue spectrum of A. Stokes problem preconditioned by Ql-Ql FE. Diricblet boundary 
conditions. N = 13. 
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where A’ is the element area and k is an unknown constant. The filter proposed by 
Sani et al. [20] weighs the CB mode over four adjacent elements: 

i jj’A’=O. (3.6) 
i= 1 

The filtered pressure field is then computed on a smoothed grid such that 

p; = c piA’/ c A’, 
i=l I i=l 

(3.7) 

where the coordinates of the new pressure node are defined by the following 
relations (depicted in Fig. 4): 

x;= i xiAi i A’, r,!= i xiA’ i A’, 
i=l i=l i=l i=l 

(3.8) 

In the right-hand side of (3.7), the pi are FE (polluted) pressures. The coor- 
dinates (3.8) are those of the centroid of each group of four neighbouring elements. 
Near the boundaries, one considers only groups of two elements. Corners are 
handled by a least squares solution or by linear interpolation. From the interior 
points of the smoothed mesh, one obtains the pressure in Chebyshev space through 
Chebyshev interpolation. The matrix of the interpolation problem is symmetric and 
diagonally dominant. It is solved by a Choleski decomposition. The pressures in 
spectral space are in P,,- i. Let us notice that the filtering process (3.7)-(3.8) is only 
second-order accurate. 

3.3.2. Spectral filter. Here, the Chebyshev representation interpolates pressure 
values which flipflop signs from one point to the next one in both directions. As 
these pressures are defined on GO,N, i.e., at the average values of the Chebyshev 
collocation points, we will now show that the zeroes of the CB mode are located 
on the grid G,,, defined by (2.18). This will be done for 1D interpolation because 
the extension to an n-D case is straightforward by the tensor-product character of 
the approximation, 

FIG. 4. FE polluted and filtered pressures on a patch of 4 elements. 
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Let us denote by mk the points of G,,. From the definition, we obtain 

xk+xk-l n 
mk= 

7m- ‘)= 
2 = ‘OS % ‘OS 2N tkcos&=t,i;k, (3.9) 

where g, are the zeroes of the polynomial TN. The pressure is the Lagrange 
interpolant built on the N abcissae mk and may be written as 

Ptx)= ; PklktXh 
k=l 

(3.10) 

with 
4x) 

‘k(x)= (x-mk) w’(mk)’ 

co(x)=(x-mm,)(x-mm,)ss+(x-mm,). 

(3.11) 

As GO,N is the array of the interpolation nodes, w(x) = <f”TN(x/rl), and therefore 

N 
dmk) t1 

k:l (x-mk) mN(tk)’ 

= T~(x/tl) N N 1 (_,)k-,P(“k~~“~~::)“‘, 

k=l 

= 
(3.12) 

We have used (3.5) to get (3.12) with Af;=cos(nk/N)-cos(n(k- 1)/N). With the 
identity 

TN ; 0 
N T~(x/td 

=k;, tx/‘tl - tk)’ 

the right-hand side of Eq. (3.12) becomes 

p(x)= * 
TkWtf,) 

2N sin rr/N ’ 
(3.13) 

This expression vanishes for the values 

71 nk 1 
cos-cos-=- cos- 

2N N 2 ( 

2k-1 n 2k+l n 
N .5+cos -.- N 

> 
2 9 

which define the mesh Go,oa. 
The spectral filter works as follows. From the centered pressures on GO,N, a 

Chebyshev interpolation yields the unfiltered representation in Chebyshev space. 
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From this approximation, the pressure is evaluated on GO,... Finally, a Chebyshev 
interpolation on Go,,-.n provides the final spectral pressures. They are in P,_, as 
the pressures are the result of R, _ 1 Zg” 1 (Eq. (2.17)). 

It should be noticed that this filter yields pressures in PN-*. This is analogous 
to the new Legendre spectral element method [21], where a staggered mesh for the 
pressure is used with a classical Legendre grid for the velocity components. 

3.3.3. Poisson equation. Finally, a third algorithm resorts to the solution of a 
Poisson equation for the pressure 

Ap=S in Sz, (3.14) 

with the boundary conditions 

ap a%, 
&‘yq on af2. (3.15) 

In (3.15), ap/an denotes the normal derivative to the wall and u, is the normal com- 
ponent of the velocity field. A fast Helmholtz spectral solver [S] is used for (3.14). 
The finite element code is only useful to obtain the velocity field. This third proce- 
dure is less general than the two previous ones because the Helmholtz solver is 
restricted to simple geometric configurations. 

4. NUMERICAL RESULTS 

Two numerical test problems were performed. The first one is an analytical 
Stokes problem where a smooth solution exists. The second one is the regularized 
square cavity problem [22]. 

* ERR. U 
-0. ERR. V 
.x ERR. P 
-'--- RES. U 
+ RES. V 
.-ft RES. P 

IO 20 30 

Iteration # 

FIG. 5. Convergence history (errors and residuals) vs number of iterations. Theoretical solution: 
a = 4, N = 13, Q2-Ql FE, Dirichlet boundary conditions. Relaxation factor set to unity. 
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4.1. Analytical Stokes Problem 

A full solution of the Stokes problem (2.1), (2.2) may be written in the general 
form: 

u = - cos a7cx’ . sin any’, (4.1) 

v = sin a7zx’ . cos any’, (4.2) 

p = - 2an sin anx’ . sin any’, (4.3) 

f, = 4a2n2 cos a71x’ . sin any’, (4.4) 

fy = 0. (4.5) 

In the previous relations, x’ = x + 6x, y’ = y + Sy in such a way that a, 6x, and 6y 
are adjustable parameters to control the spatial behaviour of the solution. In the 
sequel, let us set a = $, 6x= 6y= 0, and 0 = [0, 112. Errors on the velocity and 
pressure fields are computed in the L, norm on G,, as well as the residue of each 
momentum equation and the continuity constraint. 

4.1.1. The Q2-Ql element. Figures 5, 6, and 7 show on 12 x 12 elements the 
convergence history versus the number of iterations, when Dirichlet boundary 
conditions are imposed. The ak value in (3.1) is set to 1 in Fig. 5. One observes that 
the iterative procedure does not produce machine accuracy because the choice of ak 
is not appropriate. 

Figure 6 is obtained with ak = i. As the iterative process is now underrelaxed, 
spectral convergence is achieved in 30 iterations. Figure 7 corresponds to the 
optimal choice ak = 3. Machine accuracy, for both u and v is attained in 21 itera- 
tions (bottom curve), while the pressure lags behind by four orders of magnitude. 
The residual on momentum equations (top curve) is worse than the residual on the 

++ ERR. 
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.x ERR. 
-.--. RES. 
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-*- RES. 

FIG. 6. Convergence history (errors and residuals) vs number of iterations. Theoretical solution: 
a = f, N = 13, Q2-Ql FE, Dirichlet boundary conditions. Relaxation factor fixed to 0.5. 
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FIG. 7. Convergence history (errors and residuals) vs number of iterations. Theoretical 
a = 4, N = 13, Q2-Ql FE, Dirichlet boundary conditions. Optimal relaxation factor is used. 

solution: 

continuity equation because of the presence of the pressure gradient term. In 
Figure 8, the Stokes problem is solved with natural boundary condition on sides 
x = 1 and y = 1. The general trend of the different curves is similar to the Dirichlet 
case. We should notice that this preconditioner gave no spectral spurious pressure 
modes in our computations. The pseudocollocation technique picks up the spurious 
pressure gradients at points where these gradients do not vanish. Therefore, the 
residual calculation enforces them to go to zero. 

4.1.2. The Ql-Ql element. The convergence history in Fig. 9 (a;= 1) confirms 
the result of the previous eigenvalue analysis. The error decay is extremely slow. 
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FIG. 8. Convergence history (errors and residuals) vs number of iterations. Theoretical solution: 
a = f, N = 13, Q2-Ql FE, Natural boundary conditions. Optimal relaxation factor is used. 
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FIG. 9. Convergence history (errors and residuals) vs number of iterations. Theoretical solution: 
a = 4, N= 13, Ql-Ql FE, Dirichlet boundary conditions. Relaxation factor set to unity. 

Despite the fact the computer time involved by each iteration is less than for the 
previous element, this poor behaviour stops this approach. 

4.1.3. The Ql-QO element. For this element, the uk parameter is not estimated 
through an eigenvalue study but comes from a dynamical calculation based on the 
error reduction process [S]. The final value of tlk is equal to 0.384. 

Figure 10 displays the convergence histories which are of the same type as for the 
Q2-Ql element, although the error decay is slower because of low-order 
Lagrangian interpolants. 
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FIG. 10. Convergence history (errors and residuals) vs number of iterations. Theoretical solution: 
(I = 4, N = 13, Ql-QO FE, Dirichlet boundary conditions. Automatic relaxation is used. 
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TABLE V 

CPU Time Required for one LU Decomposition and One Back-Substitution 
on a Data General Eclipse MV15000-20 Computer 

Back-substitution 
LU decomposition + residue computation 

Element (seconds) (seconds) 

Q-Q1 49 6.0 
Ql-QO 32 3.5 
Ql-Ql 10 2.2 

a We defined the convergence by )u,,,,,I d lo-‘*. 

Total CPU time for 
convergence” 

(seconds) 

121 
137 

2230 

To set up overall perspective for the final comparison, we still need an indication 
of the computational cost of each preconditioner. For that purpose, Table V 
gathers computer times for the LU decomposition and for the back-substitution 
with N= 13 for the three preconditioners. 

To achieve an error of 0( 10-12) on u, the Q2-Ql preconditioner requires 12 
iterations, while the Ql-QO performs 30 iterations. The amount of computing time 
is therefore very similar for both methods. However, we discarded the Ql-QO 
method because the presence of the CB mode implies a boundary constraint 
equation which may lead to a discrete ill-posed problem [20]. 

4.2. The Regularized Square Cavity 

We quickly avoid the celebrated standard square cavity problem where upper 
corner singularities induce algebraic rates of convergence. The regularized square 
cavity [22] smoothes out the first-order singularities by imposing 

u(x, 1) = 16x2(x - 1)2, v(x, l)=O, XE co, 11, 

and zero elsewhere for both velocity components (ST= [0, 11’). 
Figure 11 shows isobars and streamlines (N,, = NX2 = 13. Plots use linear inter- 

polants between nodes of GN). Table VI examines the rate of convergence of the 
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FIG. 11. Regularized square cavity problem, isobars, and streamlines, N= 13. 
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TABLE VI 

Value of the u-Component of the Velocity at the 
Geometric Center of the Cavity with Respect to 

the Chebyshev Cutoff Value 

5 -0.164578944706 
7 -0.165408447324 
9 -0.165468124154 

13 -0.165473291361 
17 -0.165473486334 
21 -0.165473495005 
25 -0.165473497888 
33 -0.165473500662 

Chebyshev approximation for the value of the u component at the geometric center 
of the cavity. 

Let us denote u($, 1) by U,id. If one takes the value of U,id obtained with N= 33 
as benchmark solution, one observes that the error decay is indeed spectral from 
N = 5 to 17, with N = 9 as an intermediate discretization. 

CONCLUSIONS 

This paper considered the problem of the Chebyshev pseudospectral approxima- 
tion preconditioned by finite elements for the stationary Stokes equations. Three 
different elements were analyzed for the velocity-pressure formulation: the classical 
(9-nodes) Q2-Ql Lagrangian element, the Ql-Ql element proposed by Brezzi, and 
the Ql-QO element. An eigenvalue analysis of the preconditioned pseudospectral 
Stokes operator revealed that the Q2-Ql element constitutes an interesting 
candidate for preconditioning. Numerical tests on analytical solutions and on the 
regularized square cavity problem were performed. It was observed that the 
theoretical analysis is corroborated. Therefore, the Q2-Ql element is the best pre- 
conditioner even in the case where natural boundary conditions are .applied. This 
result opens the way of multidomain decomposition [23, 241 which will be studied 
thoroughly in a further paper within the framework of the Navier-Stokes equations. 
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